除此之外,还有其他许多著名的猜想。
从某种意义上来说,L函数的这一表述背后,隐藏了一系列无比宏伟的数学结构。
这些结构的背后,不仅仅是问题本身的涵义,还包含着许多强有力的解决工具。
此外,L函数大体上有两种不同起源的L函数,分别是MotivicL函数和自守L函数。
阿廷L函数,也就包含在这其中。
而MotivicL函数则起源于代数数论和代数几何。
众所周知,代数数论的一个核心问题,是求解整数系数的一元多项式方程。
对于每一个素数p,都可以考虑模p的情形,并得到有限域上的一元多项式方程。
原则上来说,可以很容易的求解。
而模p的解,如何联系于整数解,又是数论的一个重要问题了。
高斯和欧拉发现的著名二次互反律,就是这一问题,在一元二次多项式的特殊情形的解。
后来,随着20世纪初的类域论这一重要发现,对于更大一类的一元多项式方程,解决了这一问题。
但是这一类方程并不是由多项式的次数限定的,而是取决于方程的内蕴对称性。
更加精确地说,取决于它的伽罗瓦群。
不得不说,数学的发展,真的是靠某些大神的。
不止于高斯欧拉黎曼,伽罗瓦在19世纪初的革命性工作,就是首次引进了群论。
并且利用群论来精确地度量多项式的对称性。
也因此,数学家们第一次能够绕开繁琐的计算,用更深层次的抽象性质,去处理表面更加具体的问题。
这也标志着现代代数的开端。
一元多项式的复杂性,也就在于伽罗瓦群的复杂性。
而类域论处理了交换伽罗瓦群的情形。
至于非交换的情形,则因为要复杂的多,成为了现代朗兰兹纲领的一个重要目标。
朗兰兹纲领就是陈舟论文的三大审稿人之一,朗兰兹教授搞出来的。
可以说,从一定程度上,L函数引导了现代代数的发展。
而作为具有领导地位的代数学家,埃米尔·阿廷教授所留下来的两个难题,确实可以说是代数领域里至关重要的两大难题。
可是,这和现在的自己,有多少关系呢?
陈舟便说道:“确实是两个很重要的难题,可是这两个难题的解决,却并不是那么容易的。如果你在研究它们,那祝你好运。”
诺特没有理会陈舟的话,她紧盯着陈舟说道:“难道你不觉得解决这样的难题,是十分具有吸引力的一件事吗?”
陈舟皱着眉头看向诺特,这是要拉拢自己?
见陈舟没有说话,诺特继续说道:“甚至于,我们可以基于此,解决L函数这一系列的问题!包括朗兰兹纲领在内的一系列问题!”
陈舟咧了咧嘴,这位学姐,怕不是没睡醒吧?
朗兰兹纲领?BSD猜想?霍奇猜想?黎曼猜想?
这一系列的……问题?
陈舟很想问问她,她有解决过数学猜想吗?