而且,即便再说下去,也不会有人相信,反而容易得罪人。
更何况,很多东西他是根本没法解释清楚的,还需要做大量的实验验证才行,因此暂时来说只能淡化处理。
出于往日的情面,他能做出的提醒,也只能点到为止而已。
不过,他倒是不用担心,等他随后将他自己的这些程序在一定范围内公布出来的时候,这种‘低级’的吸波材料,到时候恐怕连姜教授自己,也看不大上眼了吧!
到了那个时候,老人家自然会明白自己的良苦用心。
……
说起来,对于他发现和总结出来的这些计算程序,在材料学的研究上,究竟能够发挥多么深刻的影响力,一开始刘峰其实并没有很深刻的认识。
但有一点他至少知道,这些计算程序绝对能够改变像常温超导材料这种比较前卫新颖的材料学的研究方式。
最起码,限制常温超导材料的技术路线瓶颈一旦突破,整个相关行业都将受益。
无论是反物质工程还是可控核聚变托卡马克装置,随着常温超导问题的解决,很多问题都将迎刃而解,原本无法实现的事情,也有了实现的可能。
尤其是对可再生能源的利用,更会极大影响现有世界的能源利用格局。
毕竟,像高原上才有的强劲的风,沙漠中方能长沐的日光,都与人类世界相隔甚远,这些能源要向绿色能源转变,面临的最大挑战之一,就是如何跨越数百千米的距离,将这些来自偏远之地的电力输送至城市。
而最先进的常温超导电缆,可将电能输送几千千米而几乎没有能源的损耗。
毫无疑问,常温超导材料将使全球化电力供应梦想成真,通过横穿地中海底的超导电缆,非洲撒哈拉沙漠的太阳都可以给西欧供电。
只不过,在和姜教授的一番沟通之后,刘峰猛然发现,原来他的这种新技术新程序,竟然可以影响到国之重器J-20的研究,更进一步,其他如航天器、航母、核潜艇等大国重器,是不是也能够因此而受益呢?
虽然这势必会触动一部分人的利益。
比如在做这些方面课题的实验室。
毕竟,研究出一种可以实际应用的常温超导材料,干掉的可能只是在相关领域最有希望的材料研究;但直接在材料研究的这一技术领域拥有一种指导性质的理论规则,干掉的可能就不只是几种材料的相关研究了,而是投资了数亿甚至是数百上千亿的研究项目,以及原本端这碗饭的研究人员。
尤其是对于像华国这般在材料领域落后了数十年的国家来说,凭借这些程序,就能像做了宇宙飞创一般,短时间内,就能追赶上人家数十年积累起来的领先优势!
这岂不是说,欧美那些国家,数十年如一日地在这些方面投入的血汗,瞬间就成为了傻瓜一般的苦力行为?
真要到了那一刻,那些人非得气吐血了不可!